How Chameleons Adapted To A Tree-Climbing Lifestyle

http://www.iflscience.com/sites/www.iflscience.com/files/styles/ifls_large/public/blog/%5Bnid%5D/TOP%20COLORFUL%20CHAM.jpg?itok=5EeUyg5g
http://www.scienceofwonder.org/how-chameleons-adapted-to-a-tree-climbing-lifestyle/

Like us, chameleons have five digits on each of their hands and feet, but theyre bundled up with connective tissue, making the lizards look two-toedor like theyre trying to do a Vulcan salute. This helps them grip branches, and according to work published in BMC Evolutionary Biology last month, their expert tree-climbing abilities are thanks to previously understudied skeletal elements that also form ball-and-socket joints in their wrists and ankles.

Among living reptiles, chameleons are the best adapted for a tree-climbing lifestyle. To find out more about how their adaptations developed, La Sierra Universitys Raul Diaz and Paul Trainor from the Stowers Institute for Medical Research studied embryos of the veiled chameleon (Chamaeleo calyptratus). First, the duo wanted to know if the same mutations that give rise to split hand (or split foot) syndrome in humans are also behind the chameleons two-toed appearance. In people, mice, and birds alike, these mutations occur in genes involved in maintaining limb outgrowth, such as Fgf8.

Surprisingly, the team discovered that Fgf8 is expressed without problems in chameleons. “Most of what we know about vertebrate development comes from zebrafish, frogs, chickens, miceand humans,”Diaz said in a statement. “Looking at atypical species, such as the veiled chameleon, forces us to begin to think within an evolutionary framework to try and figure out how a unique chameleon body was made.”

The researchers then turned to the chameleons’ wrists and ankles. Perhaps whats happening in those joints are affecting the fingers and toes? By clearing and staining chameleons in various stages of development, the team found never-before-seen skeletal elements: nine in the wrist and seven in the ankle. Until now, we thought they had half as many. Some of these were transitional elements that condensed as cells, others differentiated into cartilage or fused with nearby skeletal elements, and only half actually went on to form the bones we see in adults.

This higher number of independent skeletal elements, along with the ball-and-socket joints in their wrists and ankles, offer greater flexion. “Theyll hold onto a branch and rotate their entire body around a particular gripping point,”Diaz told IFLScience. “If we tried to do that, wed tear a ligament.”When they rotate, they have two swivel points.

Big, colorful, specialized chameleons like the veiled chameleon evolved more recently. Earlier members of the lineage were likely small, drab, and lived on the ground. There are small, ground-dwelling (maybe bush-climbing) chameleons around today; they have fewer wrist and ankle components than veiled chameleons, and they also walk with a stiff footing. Turns out, the angle between their two bundles of digits is about 180 degrees (that means fingers on the same hand can point in two opposite directions).

In veiled chameleons, that angle is reduced: Having more wrist and ankle parts actually pushes the two bundles of digits closer together. “Their hands and feet are able to move faster and hold onto more of a diversity of branch sizes as they climb,”Diaz explained to IFLScience. “The more small parts you have, the more complex movements you can do.”

Image in text:Raul Diaz/La Sierra

Photo Gallery

Source: Array

#AmazingWonder
Wonder Of Science

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s